

Australian Government

Australian Radiation Protection and Nuclear Safety Agency

Updated Guidance on the Application of Exclusion, Exemption and Clearance of Radioactive Material in Australia Based on International Best Practice

Erin McWilliams, Arne Biesiekierski, Fiona Charalambous, Samir Sarkar and Rick Tinker

Concepts: Exclusion, Exemption & Clearance

Exclusion, **exemption** and **clearance** are used as part of the process to determine the nature and extent of regulatory control as it applies to planned exposure situations as part of the optimisation process.

Exclusion exposures deemed not amenable to control, regardless of the exposure magnitude

> a decision that regulatory control is not practically possible. [SET ASIDE this 'trivial' category]

Exemption a source or practice that need not be subject to some or all regulatory control

- > a decision **before** regulated activities commence
- > source levels derived via conservative scenario assumptions
- **Clearance** a source within a regulated practice that is removed from regulatory control
 - > a decision **after** regulated activities commence
 - > source levels derived via conservative assumptions **and/or** case-by-case assessment

IAEA Standards for Exemption & Clearance

The application of **exemption** and **clearance** concepts are embodied in IAEA publications, including:

Basis of Clearance Levels for Bulk Amounts of Material

General	lapproach	
UCHCIA	i appioaci	

- Calculation methods
- Exposure scenarios
- Solid contamination
- Artificial & natural RNs

Realistic parameter values & 10 µSv/year criterion + Low probability values & 1 mSv/year criterion

Development of levels

- Dose coefficients
- Limiting pathways
- Parameter values

Bulk activity levels (Bq/g)

Scenario	Description	Expo	osed	F	Relevant e	xposure pathy	vay		Element	Real	listic	Low probability	, I	Element	Re	alistic	Low probabilit
WI	Worker on landfill	Wa	kor	Exter	alexpoer	re on landfill			Ag	(0	0	١	Nb		0	0
WL	or in other facility		KCI	Extern	iai exposi				Am	2	0	20	N	Ni		1 000	300
	(other than foun	TABLE 3.	GEN	IERA	L PARA	METERS O	F EXPO	SURE SO	ENARIOS						- 1	50 ^a	5
																30 ^a	30
WF	Worker in found						WL		F W	0	RL	RF	RH	RP	_	268 ^a	240
	for a contract in round				Unit	Case	Work	er Wo	ker Oth	ner R	lesident	Resident	Resident	Reside	ent	12 ^a	12 ^a
							landf	ill four	idry wor	ker	andfill	foundry	house	plac	e .	2 000	550
		Exposure	time (t)	h/a	Realistic	450	450	900		1000	1000	4500	400		203	20ª
			TAB	LE 4.	PARAM	AETERS FO	R EXTI	ERNAL I	RRADIAT	TON SC	ENAR	IOS				- 1	20
wo	Other worker	Decay tin															44-
RL-C	Resident near la	Desert								/L		/F/WO	RI	1	R	Р	0
KL-C	or other facility	scenario (nit	Case	Worker	landfill	For	indry or	Resident	house	Resider	nt place	0
		Decay tin									othe	r worker					0
RL-A		food scen	Dilu	tion fac	tor (f_d)			Realisti	: 1		0.1		0.1		0.1	-	182 ^a
		Decay tin	Den	sity o	TABLE	5. PARAM	IETERS	FOR IN	b. I . I HALATIC	ON SCE	NARIO	DS	0.5		0.5		0
RF	Resident near fc	lood scen	Geor	metry							WI.	WF	RL-A	R	L-C	RF	RP
		(1-						Unit	Case	-							
RH	Resident in house constructed of	Ad (>1						0	cuse	la	orker ndfill	foundry	Resid	lent land	fill	foundry	place
	contaminated mat	erial			Dilution	the factor (f_d)		1	Realistic	0.1		0.02	0.01	0.01		0.002	0.1
RP	Resident near pub	olic Chi	Dose	e rate					Low prob.	1		0.1	0.1	0.1		0.01	1
	place constructed	erial (1-	(\dot{e}_{ext}))	Dust co	ncentration	1	g/m³	Realistic	5>	< 10 ⁻⁴	5×10^{-4}	10-4	10-4		10-4	10-4
	contaminated mat		1.001	mate	in air (C	dust)			Low prob.	10	-3	10 ⁻³	5 × 10 ⁻¹	4 5×	10-4	5×10^{-4}	5×10^{-4}
	contaminated mat			man	Concen	tration factor	(f_) *			4		1-70	4	4		1–70	4
RW-C	Resident using wa	ter Chil	d	Ince	conten												
RW-C	Resident using wa	ter Chil or (1-2	d a)	Inge	Breathi	ng rate (\dot{V})	1	m³/h		1.2		1.2	1.2	0.22		0.22	0.22
RW-C	Resident using wa from private well consuming fish fro	ter Chil or (1-2 om Adu	d a) lt	Inge wate	Breathi Dose co	ng rate (\dot{V}) efficient (e_{inh})	1)	m³/h uSv/Bq		1.2 5 µ	ım,	1.2 5 μm,	1.2 Adult,	0.22 Chi	ld	0.22 Child	0.22 Child

			01 11111110111		
Radionuclide	Concentration	\square	Radionuclide	TABLE 16. ACTIVITY CONCENTRAT	ION VALUES (Bq/g)
H-3	100		Sc-48	FOR RADIONUCLIDES OF NATURAL	LORIGIN
Be-7	10		V-48	Radionuclide	Concentration
C-14	1		Cr-51		Concentration
F-18	10	а	Mn-51	K-40	10
Na-22	0.1		Mn-52	All other radionuclides of natural origin	1
Na-24	1	а	Mn-52m		
Si-31	1 000	а	Mn-53	100	
P-32	1 000		Mn-54	01	

Reference Exemption & Clearance Levels

() IAEA

OF ARTIFICIAL ORIGIN

Radionuclid

the thorium decay chain

K-40

Radionuclid

H-3

Be-7

C-14

F-18

Na-22

Na-24

Si-31

P-32

P-33

S-35

Cl-36

CI-38

K-42

K-43

Ca-45

Ca-47

Activity concentration

(Bq/g

100

10

Each radionuclide in the uranium decay chain or

100

10

100

10

Co-60

7n-69m

Ga-72

Ge-71

As-73

As-74

Ne-19

O-15

F-18

Na-22

Na-24

Mg-28

Al-26

Si-31

Si-32

P-32

n 22

Activity concentration (Bg/g

10

10

10

10 000

1 000

 1×10^{2}

 1×10^{2}

 1×10^{1}

 1×10^{3}

 1×10^{3}

 1×10^{3}

 1×10^{9}

 1×10^{9}

 1×10^{6} V-48

 1×10^{6}

 1×10^{5}

 1×10^{5}

 1×10^{5}

 1×10^{6}

 1×10^{6}

 1×10^{5}

Ti-45

V-47

V-49

Cr-48

Cr-49

Cr-51

Mn-51

Mn-52

Mn-52m

 1×10^{1}

 1×10^{1}

 1×10^{1}

 1×10^{4}

 1×10^{2}

 1×10^{1}

 1×10^{3}

 1×10^{1}

 1×10^{1}

 1×10^{1}

 1×10^{6}

 1×10^{5}

 1×10^{5}

 1×10^{7}

 1×10^{6}

 1×10^{6}

 1×10^{7}

 1×10^{5}

 1×10^{5}

 1×10^{5}

- Clearance: any mass; artificial solid RNs
- Clearance: any mass; natural solid RNs •

? Clearance of moderate vs bulk amounts of solids? (later)

Australian Implementation of Exemption & Clearance

Australia – Further Work on Exemption & Clearance

Integrated Regulatory Review Service ACTION PLAN

Australia's Action Plan for Implementing the Findings of the 2018 Integrated Regulatory Review Service Mission IRRS 2018: The IAEA conducted their 2nd Integrated Regulatory Review Service mission.
 Objective: Review Australia's arrangements for radiation protection and nuclear safety.
 Recommendation #22: Commonwealth to adopt and implement uniform clearance levels.

No.	Recommendations	Responsible committee	Key Stakeholders	Propos	sed Actions
R22	The Commonwealth Government, in conjunction with the state and territory Governments, should progress the adoption	enHealth	ARPANSA, S/T regulators, Commonwealth	•	NDRP2 to be updated with the requirement for jurisdictions to add pt the clearance levels in Schedule 1 of GSR Part 3.
	and implementation of uniform clearance levels.		Department of Health, S/T policy agencies	•	enHealth will provide guidance on the application of clearance levels in accordance with Schedule 1 of GSR Part 3.

Action Remaining: Provide guidance on clearance levels in accordance with GSR Pt3.
Intent: Develop exclusion, exemption & clearance guidance for Australian jurisdictions.
Guidance Source: GSR Pt3 + GSG-17/18 (new guidance) + local context + experience.
Status: Project commenced via enHealth & Radiation Health Committee (RHC).

Aspects of Guidance on Exemption & Clearance

Example Guidance on Application of 'Generic' Levels

Application of Specific Exemption & Clearance Levels

Application of Specific Exemption Criteria

In case a practice or source within a practice does not comply with generic **exemption** requirements, or they cannot be applied, the regulator will consider a case-by-case (specific) **exemption**. Examples of specific **exemption** cases include, but are not limited to, bulk amounts of solid materials with radionuclides of natural origin, bulk amounts of liquids and gases with radionuclides of any origin, surface-contaminated commodities, and certain consumer products.

To qualify for specific **exemption**, a person or organization should demonstrate that the intended practice:

- is justified, and
- complies with the general criteria for **exemption** as per GSR Part 3 paragraph I.1 (i.e. radiation risks are sufficiently low, and regulatory control would yield no benefit), and
- complies with other relevant general criteria for exemption of GSR Part 3 Schedule I, such as dose criteria specified in paragraphs I.2 (10 μSv per year for all cases) and I.4 (1 mSv per year for bulk amounts of material containing natural radionuclides).

To be granted a specific **exemption**, planned activities must be analysed via an appropriate safety assessment for compliance with these general criteria for **exemption**. See [Appendix II – Safety Assessment] for general guidance on safety assessments.

When GENERIC levels are not suitable, case-by-case SPECIFIC levels may be developed:

- Compliance with general criteria of GSR Pt3
- Activities must be analysed via a Safety Assessment
- Derive levels from first principles / best-practice examples / regulatory guidance
- Such as (i) exemption of bulk naturals (ii) surface contaminated objects

Example Specific SCO Clearance Levels from GSG-18

Example #5: Specific Clearance Criteria, SCOs, Multiple Natural Nuclides

Remediation under regulatory control of a historical mineral sand processing facility identified significant quantities of steel infrastructure contaminated with naturally occurring radionuclides: Th-232 and Th-234 (from U-238). Segregation of metal scrap was proposed in order to minimise waste volumes and allow recycling of cleared material. Measurements of surface contamination (Bg/cm²) would be used to efficiently identify material suitable for clearance and subsequent recycling. This example applies similarly to a process leading to the disposal of the material in normal waste streams.

Table 7-2:	Radionuclide	specific doses f	from 1 Bq/cm ²	for manual scra	ap processing.	
Radionuclides	Ingestion Dose μSv/a	β-Skin Dose µSv/a	External Exposure µSv/a	Thermal μSv/a	Inhalation Doses Saw µSv/a	
Th 232	5.5E-1	4.1E-6	5.8E-2	8.7E+1	5.3E+0	
Pa 231	1.8E+0	1.5E-4	2.3E-2	2.7E+2	1.6E+1	Desire
U 232	8.3E-1	6.8E-6	1.9E-1	7.8E+1	4.8E+0	Basis to of surface
U 233	1.3E-1	1.6E-6	3.2E-4	2.1E+1	1.3E+0	contami
U 234	1.2E-1	4.8E-6	6.5E-4	2.0E+1	1.2E+0	levels fo
U 235	1.2E-1	2.5E-4	8.0E-2	1.8E+1	1.1E+0	arising f
U 236	1.2E-1	4.3E-6	6.0E-4	1.9E+1	1.2E+0	dismant
U 238	1.2E-1	3.7E-6	1.1E-2	1.7E+1	1.0E+0	installati

More Examples of Specific Exemption from GSG-17

More Examples of Specific Clearance from GSG-18

Further Considerations & Limitations

Emphasis of the Australian context

- Mining & milling operations
- Decommissioning of facilities

Commonwealth vs State & Territory

- 2 guidance documents required ?
- State disposal of material cleared by C'wealth
- > Importance of national uniformity

'Cost' to develop SPECIFIC levels

- Finding balance
- Optimisation vs ease of GENERIC levels
- Encourage sustainable practices
- Minimise disposal volumes

DRAFT GUIDANCE SOON FEEDBACK WELCOME

Thank you

