Forensic and Scientific Services

Groundwater influence on uptake of radium, polonium-210 and lead-210 in freshwater mussels (Velesunio ambiguus)

Peter Medley^a and Drew Watson^a

^aQueensland Health, Radiation and Nuclear Sciences, Brisbane, Queensland, Australia. peter.medley@health.gld.gov.au

Research project assessing groundwater impacted site

- Southern Queensland
- Groundwater used to augment dam level during a period of drought
- Radium detected in unfiltered groundwater and in settling pond sediment
- Sampling of water, sediment and freshwater mussels

 Mapping radium in the creek bed sediment impacted by the groundwater discharge to be discussed on later presentation

Study site

- Sampling of water, sediment and freshwater mussels:
 o From groundwater outlet (Water)
 - Along intermittent creek line of groundwater flow (Water)
 - At flow point into the dam (Water, sediment and freshwater mussels)
 - At unimpacted 'background' site in the dam (Water, sediment and freshwater mussels)
- Assess impacts Radiological dose to people
 Velesunio ambiguus

Sample preparation and analysis

- Mussels purged flesh removed and dried for analysis:
 ²¹⁰Pb by LSC, ²¹⁰Po and ²²⁶Ra by alpha spec., ²²⁸Ra by HPGe gamma spec., ICP for metals
- Water samples → quite clean water, acidified in bottle (unfiltered)
- Sediment samples dried and measured by HPGe gamma spec.

Assessing radiological dose to people and to the environment

- Ingestion of bush foods can lead to radiological dose to members of the public
 - Dose conversion coefficients suggest relative importance is:
 ²¹⁰Po > ²¹⁰Pb & ²²⁸Ra > ²²⁶Ra
- Freshwater mussels may strongly bioaccumulate Ra
 - \circ Ra behaves as an analogue to Ca
 - Ca is an essential element and uptake is regulated
 - \circ Ra is not removed after uptake

Dose Conversion Coefficients

²²⁸Ra and ²²⁶Ra activity concentrations in mussels

- Impacted site in graph → Much higher than background site:
 ²²⁶Ra: 4.6–5.4 Bq kg⁻¹]
 - \circ^{228} Ra: <6.1 Bq kg⁻¹ \int^{228} Ra

 \circ No correlation with age (²²⁶Ra R² = 0.12)

Moderate correlation of ²²⁸Ra and ²²⁶Ra
 R² = 0.48, slightly better if ²²⁸Ra decay is accounted for

 \circ^{228} Ra:²²⁶Ra ratios 0.42±0.18 (σ =2)

Radiological dose from ingestion and to the mussels

• ²¹⁰Po ~10 Bq kg⁻¹

 ²¹⁰Pb <2 Bq kg⁻¹
 No difference in background and impacted site

Dose estimate:
 o²²⁶Ra = ²²⁸Ra

Combined >95%

Radionuclide	Dose 10 y (Child; mSv year⁻¹)	Dose Adult (mSv year⁻¹)
²¹⁰ Pb	0.003 ± 0.003	0.001 ± 0.001
²¹⁰ Po	0.02 ± 0.05	0.01 ± 0.02
²²⁶ Ra	0.3 ± 0.2	0.12 ± 0.06
²²⁸ Ra	0.3 ± 0.2	0.12 ± 0.07
Total	0.7 ± 0.4 (1.1)	0.25 ± 0.15 (0.4)

• Actual consumption Note: Annual dose from assumed consumption of 1 kg per year fresh weight. by the general public is low

7

Radiological dose from ingestion and to the mussels

• ²¹⁰Po ~10 Bq kg⁻¹

 ²¹⁰Pb <2 Bq kg⁻¹
 No difference in background and impacted site

• Dose estimate: \circ^{226} Ra = 228 Ra

Combined >95%

Radionuclide	Dose 10 y (Child; mSv year⁻¹)	Dose Adult (mSv year⁻¹)
²¹⁰ Pb	0.003 ± 0.003	0.001 ± 0.001
²¹⁰ Po	0.02 ± 0.05	0.01 ± 0.02
²²⁶ Ra	0.3 ± 0.2	0.12 ± 0.06
²²⁸ Ra	0.3 ± 0.2	0.12 ± 0.07
Total	0.7 ± 0.4 (1.1)	0.25 ± 0.15 (0.4)

 Actual consumption Note: Annual dose from assumed consumption of 1 kg per year fresh weight. by the general public is low → Potentially high doses from unexpected sources or from traditional diet.

²²⁸Ra:²²⁶Ra activity ratios in mussels, sediment and water

- Impacted site
 - o ²²⁶Ra in waters 0.3-0.7 Bq L⁻¹
 - \circ ²²⁸Ra in waters 0.6–1.5 Bq L⁻¹
 - Decreasing with distance from bore

Background

o ²²⁶Ra <0.005 Bq L⁻¹, ²²⁸Ra <0.05 Bq L⁻¹

- Sediments → Elevated at impacted sites (see Drew's talk tomorrow)
- ²²⁶Ra:²²⁸Ra ratios <u>very</u> different in mussels compared both water and sediment → Unknown why

Sampling sites (impacted)	²²⁸ Ra: ²²⁶ Ra
Sediment Mussel site	3.6 ± 0.3
Sediments (transects)	1.7 ± 0.5
Sediment (upstream)	1.8 ± 0.1
Waters (average all sites)	1.9 ± 0.2
Mussels	0.42 ± 0.18

Velesunio ambiguus: Biomonitoring tool

- Jeffree et al (1993) suggested
 Velesunio ambiguus as a useful
 biomonitoring tool
 - Ca tissue concentration a better predictor or ²²⁶Ra concentration than size or age.
 - Removes variability in Ra tissue concentrations as issue in biomonitoring
- Outriciatia fromutation baakgroundwate in by Two Freshwater Mussel Species Offree et al from the Nepean River, Australia: (1993) Incies and a Resolved Paradox
- Impacted site shows very clear
 Ross A. Jeffree, Scott J. Markich and Paul L. Brown
 CONTRAST
 Aust. J. Mar. Freshwater Res., 1993, 44, 609–34

Mining wastewater discharge regulations: What about Radium?

 International example: Metal and Diamond Mining Effluent Regulations in Canada

o ²²⁶Ra a "Prescribed Deleterious Substance"

Australian regulations

o Mentions uranium

 \circ No specific mention of radium \rightarrow Typically only considered for uranium mining

• Should Australia have regulations/limits for ²²⁶Ra (and ²²⁸Ra) discharge in mining, mineral processing or other industrial discharge waters?

Retrospective assessment: Need for ²²⁶Ra discharge limits

Measure mussels

O Upstream/downstream of discharge points
 O Mining, other industrial activities

- Velesunio ambiguus
 - \circ Distribution is very broad
 - Suitable for any current operations
 - Can be retrospective (to the limit of mussel age)
- Relatively low-cost, non-prescriptive way to determine need for ²²⁶Ra discharge limits, monitoring or regulation

Distribution of *Velesunio ambiguus* (Atlas of Living Australia (n=1065))

Conclusions

- ²²⁶Ra and ²²⁸Ra: High uptake into Freshwater mussel Velesunio ambiguous
 o Low uptake of ²¹⁰Pb and ²¹⁰Po
- Ingestion doses high at impacted site → >1 mSv year⁻¹ for a child (1 kg)
 >95% of dose from ²²⁶Ra and ²²⁸Ra (approx. equal contribution)
- ²²⁸Ra:²²⁶Ra ratios at impacted site different in mussels compared to sediment/water
 Suggests potential different environmental origin and behaviour of each isotope
- Freshwater mussel Velesunio ambiguus represents a useful biomonitoring tool

 For industrial and development activities
 - For assessment of need for ²²⁶Ra discharge limits for mining and mineral processing operations, and other industrial activities