

Findings of the Cyclowest Radiation Survey for the GE PETtrace Cyclotron at the Bayswater Site

Dr Samer Bakr

Contents

- Overview of Cyclowest site in Bayswater
- Cyclotron and Radiation Fields
- RP For Workers, Public and Environment
- Shielding for Neutrons
- Effectiveness of Neutron Barrier for Gammas
- Radiation Survey Study
- Conclusion

PROPERTY OF CYCLOWEST HOLDINGS PTY LTD

Bayswater WA

- The state currently has only one facility, operated by the WA government, and it is unable to meet the full level of demand in Perth.
- Cyclowest exists to meet the current rapidly growing demand for PET radiopharmaceuticals in WA.
- Our new private service will complement this and expand the overall capacity of the health sector to diagnose and treat West Australians.

SCHEMATIC OF THE COMPLETED WAREHOUSE

28

C

9

0

.

۲

0

-

CYCLOWEST HOLDINGS PTY LTD

PROPERTY OF CYCLOWEST HOLDINGS PTY LTD

Principle of Operation

- NEGATIVE IONS are CREATED in the center of the cyclotron.
- IONS are EXTRACTED from the Ion Source using Alternating High Voltage.
- IONS are ACCELERATED using Alternating High Voltage.
- IONS are KEPT IN ORBIT by a Static Magnetic Field.
- IONS' POLARITY is CHANGED from negative to POSITIVE using a stripping foil.
- POSITIVE IONS bend in the opposite direction in the magnetic field.
- Positive lons BOMBARD THE MEDIA in the Target.

• These lead plates will be adjusted inside the tanks for extra shielding before filled with borated water.

• The tanks from inside.

GAMMA DOSE RATE CONTOURS (µSv/h)

18F- production on enriched water (>95%). 160 μA total beam current.

13

PROPERTY OF CYCLOWEST HOLDINGS PTY LTD

VEST

Bunker Configuration

Neutrons

PROPERTY OF CYCLOWEST HOLDINGS PTY LTD

Gamma

PROPERTY OF CYCLOWEST HOLDINGS PTY LTD

Maximum Permissible Dose Rate CYCLOWEST

10% Occupational Annual Dose Limit
$$(20\frac{mSv}{h}) = 2\frac{mSv}{h} = 40\frac{\mu Sv}{week} = 1\frac{\mu Sv}{h}$$

50% Public Annual Dose Limit $\left(1\frac{mSv}{h}\right) = 500\frac{\mu Sv}{h} = 10\frac{\mu Sv}{week} = 0.25\frac{\mu Sv}{h}$

Shielding for Neutrons

- NCRP 51 [Dose per N_{flux} vs T_{Concrete}]
- Ratio [neutron dose rate/public dose rate] [21/0.25=84]
- N_{flux}/84 \rightarrow 45 cm of concrete.
- NCRP 51, NCRP 144 (+HVL)
- = 55 cm of concrete
- Extra safety (+10 cm)
- = 65 cm of concrete
- 65 cm = 160 g.cm⁻² \rightarrow N_{flux} (0)/ N_{flux} (160) = 300
- 21 µSv/h / 300 =0.07 µSv/h

Effectiveness of Neutron Barrier for Gamma

•
$$I = I_0 \div 2^{\left(\frac{x}{HVL}\right)} \rightarrow I\left[\mu\frac{Sv}{h}\right] = 21\left[\mu\frac{Sv}{h}\right] \div 2^{\left(\frac{65\left[cm\right]}{12\left[cm\right]}\right)} = 0.49 \ \mu Sv/h$$

• $0.07 + 0.49 = 0.56 \,\mu Sv/h$

Control Room
$$\frac{2 \times 250}{2000} = 0.25 \rightarrow 0.56 \times 0.25 = 0.14 \ \mu Sv/h < 1 \frac{\mu Sv}{h}$$

Car Park $\frac{0.5 \times 250}{2000} = 0.0625 \rightarrow 0.56 \times 0.0625 = 0.035 \ \mu Sv/h < 0.25 \frac{\mu Sv}{h}$

Bunker floor level setting

Radiation Survey Study 01

Dose rate range (µSv/h)	
0 to 0.3	
0.3 to 10	
10 to 200	
200 and higher	

LDINGS PTY LTD

Radiation Survey Study Gamma 03

Dose rate range (µSv/h)	
0 to 0.3	
0.3 to 10	
10 to 200	
200 and higher	

LDINGS PTY LTD

Conclusion

- The barrier thickness has been determined for a GE PETtrace cyclotron
- A comprehensive radiation study was carried out using advanced equipment.
- The study covered multiple monitoring locations within and outside the facility.
- The Radiological Council of Western Australia's guidelines for radiation worker dose limits were considered.
- Notable gamma hotspots were found in the cyclotron's self-shielding tanks inside the bunker.
- These however do not result in any measurable elevated radiation dose rates outside of the bunker.
- This investigation confirms that cyclotron operational dose rates remain well within established safety thresholds.
- The overall radiation impact of the cyclotron on both the neighbours and the environment is deemed negligible and therefore well within acceptable limits.