Ismael Khan, Riaz Akber

ismael.khan@saferadiation.com r.akber@saferadiation.com

Thoron (thorium series)

²²⁰Rn 55.6s

Radon (uranium series)

²²²Rn 3.82d

Thoron (thorium series) ²²⁰Rn 55.6s Thoron progeny ²¹²Po^{64%} ²¹⁶Po ²¹²Bi 0.003 s 0.145s 1.01 h ²¹²Pb 208TI 36% 10.6h 3.06m

Radon (uranium series)

²²²Rn 3.82d

Radon progeny

Thoron (thorium series)

²²⁰Rn 55.6s

D (µSv h⁻¹) = 3.6 x 10⁻² C (Bq m⁻³)

Thoron progeny

Radon (uranium series)

3.82d

D (µSv h⁻¹) = 3.1 x 10⁻³ C (Bq m⁻³)

Radon progeny

Safety Guide for Monitoring, Assessing, and Recording Occupational Radiation Doses in Mining and Mineral Processing; ARPANSA (2011) Radiation Protection Series 9.1 Annex A, page 32

Safety Guide for Monitoring, Assessing, and Recording Occupational Radiation Doses in Mining and Mineral Processing; ARPANSA (2011) Radiation Protection Series 9.1 Annex A, page 32

Safety Guide for Monitoring, Assessing, and Recording Occupational Radiation Doses in Mining and Mineral Processing; ARPANSA (2011) Radiation Protection Series 9.1 Annex A, page 32

Thoron (thorium series)

²²⁰Rn 55.6s

No reference level guideline is available for thoron (²²⁰Rn).

Considering the activity concentration to dose conversion factors it should be perhaps assumed as 1/10 of that of radon (²²²Rn)

Radon (uranium series) ²²²Rn 3.82d

Reference level for further actionWorkplace1000 Bq m-3Homes200

ARPANSA recommended radon (²²²Rn) reference level is traceable to ICRP recommendations. It corresponds to about 10 mSv y⁻¹ radiation dose rate.

Radiation Protection Series 1: ARPANSA (Republished 2002) Also retained in Guide for Radiation Protection in Existing Exposure Situations (ARPANSA 2017)

Benchtop simulation Mineral Sand 2.75x10⁻³ m³

Empty Room

Concrete structure 10.3 m³

Results

Radon and thoron activity concentration1: Build up in a sealed space2: Effect of air movement3: Effect of forced ventilation

1: Radon and thoron activity concentration build up in a sealed space

1: Radon and thoron activity concentration build up in a sealed space

$$C_t = C_{s,s} [1 - e^{-\{\ln(2) t / T_{1/2}\}}]$$

- C_t : Activity concentration in air at time t
- C_{s,s} : Sealed space, steady state activity concentration
- $T_{1/2}$: Half life of the isotope

²²²Rn (radon) – 91.8 hours (3.824 days) ²²⁰Rn (thoron) – 0.0154 hours (55.6 s)

1: Radon and thoron activity concentration build up in a sealed space

$$C_t = C_{s,s} [1 - e^{-\{\ln(2) t / T_{1/2}\}}]$$

- C_t : Activity concentration in air at time t
- C_{s,s} : Sealed space, steady state activity concentration
- **T**_{1/2}: Half life of the isotope

In benchtop simulation results: $C_{s,s}^{222}$ Rn (radon) – 8180 ± 440 Bq.m⁻³ $C_{s,s}^{220}$ Rn (thoron) – 395 ± 14 Bq.m⁻³

1: Radon and thoron activity concentration build up in a sealed space

Enclosed spaces are generally not completely sealed.

- Natural ventilation occurs through doors and windows.
- Rooms and tunnels may also have fans installed for air velocity and air circulations.
- Ventilation shafts may exist in underground tunnels. They are often equipped with fanforced air exhaust systems.

$$C_t = C_{s,s} [1 - e^{-\{\ln(2) t/T_{1/2}\}}]$$

Results

Radon and thoron activity concentration

- 1: Build up in a sealed space
- **2: Effect of air movement**
- , 3: Effect of forced ventilation

Forced ventilation - Air volume exchange (#.min⁻¹)

Benchtop simulation

Forced ventilation - Air volume exchange (#.min⁻¹)

Conclusions		Lessons from this study	
	Enclosed space	Behaviour Radon (²²² Rn)	Thoron (²²⁰ Rn)
	Build up	Slowly to steady state (days – weeks)	Steady state within minutes
	Air circulation and agitation	Air mixing may change and average out activity concentration	Dramatic increase in activity concentration is possible
	Fan forced ventilation	Effective	May be only partly effective

Conclusions

Lessons from this study

- Dose calculation based only on radon (radon progeny) in enclosed spaces may be inconclusive. Presence of thoron (thoron progeny) should not be ignored.
- Air movement and ventilation set ups in underground tunnels, caves, mines, and other enclosed spaces should be checked for the effect on thoron related radiation dose as well.