

Use and Benefits of Gamma Imaging for Radiation Protection

<u>Nicholas Karantonis</u>¹, Jayden Ilter¹, Mathew Guenette¹, Lachlan Chartier¹, Alison Flynn¹, Geoff Watt¹, John Barnes¹, Lennon Petkovic¹ and David Boardman¹

¹Detection & Imaging, ANSTO, Lucas Heights, Sydney, NSW, 2234, Australia

Science. Ingenuity. Sustainability.

Radiation Imaging

- Advanced radiation detection technique
- Offers new insight into complex radiation environments
- Maximise worker safety
- Optimise decision making

Introducing the world's most advanced radiation imaging solution

Detector Technology

Detection capability powered by CLLBC detectors (Radiation Monitoring Devices)

System Specifications Overview

Specification	Value
Detector Type	CLLBC Scintillator w/ SiPM Array (0.5"/Ø1.5")
Energy Resolution	< 4% FWHM @ 662 keV
Energy range	40 keV - 3 MeV Gamma Thermal Neutron Detection
Imaging Region of Interest	Peaks and non-peaks
Gamma Field of View	360° x 90° (H x V)
Optical Field of View	360° x 90° (H x V)
Max. Angular Resolution	$21^{\circ} \pm 1^{\circ}$
Dose Rate Range	0.5 μSv/h - 2 mSv/h (1.5" detector) 1 μSv/h - 40 mSv/h (0.5" detector)
Size & Weight	210 mm × 425 mm (D x H), 21.5 kg
Communication & Control	Ethernet connected to PC/Laptop
Rating	IP 54, 5-40 °C

ANSTO

How does CORIS360® work?

Compressed Sensing

Case Studies

- Measurement from 40 keV to 3 MeV over the full 360° FOV
- Example imaging 3 sources between 60 keV and 2.6 MeV

- Measurement from 40 keV to 3 MeV over the full 360° FOV
- Example imaging 3 sources between 60 keV and 2.6 MeV

- Measurement from 40 keV to 3 MeV over the full 360° FOV
- Example imaging 3 sources between 60 keV and 2.6 MeV

- Measurement from 40 keV to 3 MeV over the full 360° FOV
- Example imaging 3 sources between 60 keV and 2.6 MeV

- 1. Imaging round 1
- 2. Shielding
- 3. Imaging round 2
- 4. Imaging round 3
 - Neutron flux reduction

- Commissioning of new beam line
- Dose surveys showed higher than expected dose rates
- CORIS360[®] was used to identify and localise the source of the elevated radiation

- 1. Imaging round 1
- 2. Shielding
- 3. Imaging round 2
- 4. Imaging round 3
 - Neutron flux reduction

- Commissioning of new beam line
- Dose surveys showed higher than expected dose rates
- CORIS360[®] was used to identify and localise the source of the elevated radiation
- The imager determined that prompt gammas from Boron was the main source of the elevated radiation levels

1. Imaging round 1

- 2. Shielding
- 3. Imaging round 2
- 4. Imaging round 3
 - Neutron flux reduction

Before: No beam line shielding

After: Beam line shielded

 After the source of the radiation was identified, shielding was implemented to reduce the prompt gammas from Boron

Imaging round 1 Shielding Imaging round 2 Imaging round 3 Neutron flux reduction

- Boron prompt gammas now shielding from the beam line
- Further Boron prompt gammas were localised coming from the beam stop
- A closer image of the beam stop confirmed the finding
- Boron prompt gammas also observed at beam exit

- 1. Imaging round 1
- 2. Shielding
- 3. Imaging round 2
- 4. Imaging round 3
 - Neutron flux reduction

- An additional beam chopper was utilised to reduce the neutron flux
- Boron prompt gammas were now only localised to the beam line exit
- Dose rates were now within the required operational limits

Urban Search Scenario

- Blind trial
- ~65 m standoff
- Images can be generated from any part of the spectrum including peak and non-peak regions
- Image produced from spectral ROI (region between red lines)
- 15 mins to localise source

Urban Search Scenario

- Moved to a ~30 m standoff
- <2 mins to localise ¹³⁷Cs source

ANSTO

Hot Cell Imaging

- Cleaning of ¹³¹I hot cell required
- Goal was to reduce worker dose by identifying the hottest areas in the hot cell and focusing on these areas first when cleaning
- Imaging over 364 keV peak identified two main hot spots

High Dose Rate Imaging – 10 mSv/h

- Imaging ¹³⁷Cs in 10 mSv/h dose rate environment
- Results show imaging 662 keV peak using 0.5" CLLBC detector
- Able to image in dose rates from 1 μSv/h – 40 mSv/h with 0.5" detector

High Dose Rate Imaging – 40 mSv/h

- Imaging ¹³⁷Cs in 40 mSv/h dose rate environment
- Results show imaging 662 keV peak using 0.5" CLLBC detector
- Able to image in dose rates from 1 µSv/h – 40 mSv/h with 0.5" detector

Current Research and Development

High Dose Rate Imaging – 186 mSv/h

- Imaging ¹³⁷Cs in 186 mSv/h dose rate environment
- Results show imaging 662 keV peak using cubic 6 mm CLLBC detector

ANSTO

Able to image > 186 mSv/h

Neutron Imaging

Imaging 60 keV ²⁴¹Am gamma rays (blue)

Imaging thermalised neutrons (red)

- Using a dual cadmium/tungsten alloy mask, able to image gamma-rays and thermal neutrons
- ~17 min acquisition and no PSD used
- Neutron source was a 350 GBq AmBe source moderated by 13 cm of HDPE

NSTO

Synchrotron – Low Energy X-ray Imaging

 Imaging within X-ray Absorption Spectroscopy enclosure

NSTO

 Imaging at energy < 40 keV shows hotspot localised to leak in beamline

High Energy Imaging – Reactor Plant Room

- Imaging performed in plant room under OPAL reactor
- Results show imaging ~6.1 MeV prompt gammas
- Tungsten masks and 1.5" CLLBC detector were used
- Device is able to image from <40 keV to >3 MeV

THANK YOU

coris360.com

