

Australian Government

Australian Radiation Protection and Nuclear Safety Agency

Minimal Report Dose

What is an acceptable level of uncertainty in Personal Dosimetry

ARPANSA's Minimum Reportable Dose

• 2016 swapped technology from TLD to OSL

- 2018 updated Minimum Reportable Dose (MRD)
 - Increased from 10uSv to 100uSv
 - Currently under review
 - Looking for feedback
- How is it that the MRD can be changed?

Detection Limits and MRDs

- Detection Limit
 - Smallest signal of interest which can be confidently detected with the applied measurement procedure
 - This determines whether or not the measurement procedure satisfies the requirements and is therefore suitable for the intended measurement purpose
- Limit of Quantification
 - The smallest signal of interest which has an acceptable uncertainty
 - Used by ARPANSA as the Minimum Reportable Dose (MRD)

Measurement uncertainty

"range of possible values within which the true value of the measurement lies"

Contributions to the signal dose

 Occupational dose: the exposure of the worker due to their work (what we actually want to know)

• Background radiation at the place of work

• Exposure of the monitor in transit

Therefore, we need a control monitor:

Measuring Occupational Dose

 $D_{O} = D_{W} - D_{C}$

- D_{o} is the worker's occupational dose
- D_w is the gross dose on the worker's monitor
- D_c is the gross dose on the control monitor

Uncertainty in Occupational Dose

- Control Monitor: 260 μSv **±3%** = 260 ± 8 μSv
- Worker Monitor: 360 μ Sv **±3%** = 360 ± 11 μ Sv
- Occupational Dose: $360-260 = 100 \mu Sv$
- Uncertainty: $\sqrt{8^2 + 11^2} = 13.6 \,\mu\text{Sv} \,(\text{k=1})$
- Reported Dose: $100 \pm 27 \,\mu$ Sv (k=2)

27% Uncertainty

95% confidence interval between 73 and 127 μSv

Uncertainty in Occupational Dose

- Control Monitor: 260 μSv **±3%** = 260 ± 8 μSv
- Worker Monitor: 270 μ Sv **±3%** = 270 ± 8 μ Sv
- Occupational Dose: $270-260 = 10 \mu Sv$
- Uncertainty: $V(8^2 + 8^2) = 11 \mu Sv (k=1)$
- Reported Dose: $10 \pm 22 \,\mu$ Sv (k=2)

220% uncertainty

95% confidence interval between -12 and 32 μSv

Reduce the background dose

- PRMS has analysed 2 years of control values (41,000 control)
 - Dose 267uSv
 - Measurement period 16 weeks (12 week wear period)
- Shield monitors when not in use
- Decrease the wear period
 - MRD for single measurement decreases but
 - Annual dose @MRD increases due to increase frequency
 - Validation papers that use shorter wear periods mean they have small backgrounds
- Use multiple controls
 - Historic data
 - Multiple issued control

Increase the uncertainty

The smallest signal of interest which has an acceptable uncertainty (260uSv background)

Food for thought

- Is a result over or approaching 100% uncertainty a useful measurement?
 - Not all clients fully understand measurement uncertainty
 - Increased false reading
- What is the driver for low MRD?
 - History?
- Public limit 1mSv (action level of 0.25mSv per quarter)
- Variations in background
- False sense of precision? Human factors

Thank you

Email: stephen.marks@arpansa.gov.au

Email: prms@arpansa.gov.au

Phone: 1800 678 112

Website: www.arpansa.gov.au/prms

ARPANSANews

Connecting People, Developing Solutions for a Changing Environment Christchurch, New Zealand

28 November to 30 November

The program will cover all aspects of environmental radioactivity

For more information please visit

www.spera2022.nz