

The Immunomodulatory behaviour of Low Dose Radiation Therapy

Dr James McEvoy-May

The Lung Lab

Low Dose Radiation Therapy - LDTR

100 mGy

1 Gy

Centre for Radiation Research Education and Innovation

Historic Low Dose Radiation Therapy

- Historically used to treat range of inflammatory diseases from turn of 20th century
 - gas gangrene, carbuncles, sinusitis, and arthritis
- In 1905, first trialled for respiratory inflammation
 - >1920 treatment for pneumonia and asthma

Table 1

X-ray therapy in the treatment of pneumonia.

Reference	Types of Pneumonia	Case Number	Cases Cured	
Musser and Edsall [14]	Unresolved pneumonia	1		
Edsall and Pemberton [37]	Unresolved pneumonia	2	2	
Quimby and Quimby [15]	Unresolved pneumonia	12	11	
Krost [20]	Unresolved pneumonia	12	11	
Fried [72]	Post-operative pneumonia	40	32	
Fried [73]	Post-operative pneumonia	57	N/A	
Merritt and McPeak [22]	Unresolved pneumonia	7	6	
Powell [<u>3,28,33]</u>	Lobar pneumonia and bronchopneumonia	231	215	
Scott [24]	Lobar pneumonia	138	111	
Solis-Cohen and Levine [25]	Lobar pneumonia	42	40	
Settle [26]	Lobar pneumonia	34	32	
Rousseau et al. [27]	Lobar pneumonia	104	98	
Rousseau et al. [27]	Viral pneumonia	29	22	
Correll and Cowan [34]	Acute atypical pneumonia (not pneumococcal)	23	22	
Correll and Cowan, 1943	Unresolved pneumonia	9	7	
Oppenheimer [32]	Interstital pneumonia (children) 36		33	
Oppenheimer [35]	Virus pneumonia	56	45	
Torbett, 1936 (see Abstract of Discussion in Powell [3])	N/A	30	29	
Total	(863	717	

Historic Low Dose Radiation Therapy

- Reduction in symptoms 12-24hrs
 - Fever
 - Painful/laboured breathing
 - Dyspnoea
 - General improvement
- Overall improvement by 48hrs

Table 1

X-ray therapy in the treatment of pneumonia.

Reference	Types of Pneumonia	Case Number	Cases Cured	
Musser and Edsall [14]	Unresolved pneumonia	1		
Edsall and Pemberton [37]	Unresolved pneumonia	2	2	
Quimby and Quimby [15]	Unresolved pneumonia	12	11	
Krost [20]	Unresolved pneumonia	12	11	
Fried [72]	Post-operative pneumonia	40	32	
Fried [73]	Post-operative pneumonia	57	N/A	
Merritt and McPeak [22]	Unresolved pneumonia	7	6	
Powell [<u>3,28,33]</u>	Lobar pneumonia and bronchopneumonia	231	215	
Scott [24]	Lobar pneumonia	138	111	
Solis-Cohen and Levine [25]	Lobar pneumonia	42	40	
Settle [26]	Lobar pneumonia	34	32	
Rousseau et al. [27]	Lobar pneumonia	104	98	
Rousseau et al. [27]	Viral pneumonia	29	22	
Correll and Cowan [34]	Acute atypical pneumonia (not pneumococcal)	23	22	
Correll and Cowan, 1943	Unresolved pneumonia	9	7	
Oppenheimer [32]	Interstital pneumonia (children) 36		33	
Oppenheimer [35]	Virus pneumonia	56	45	
Torbett, 1936 (see Abstract of Discussion in Powell [3])	N/A	30	29	
Total	(863	717	

Calabrese and Dhawan, 2013, Yale J Biol Med; Musser and Edsall, 1905, Tr A Am Physicians; Rousseau et al, 1943, Radiology Historic Low Dose Radiation Therapy

- Although not widely accepted, it was a common therapeutic option up to 1940's
- Rise in sulfonamides and other antibiotics (penicillin)
- Dropping of the atomic bomb in WWII

https://www.news-medical.net/health/Penicillin-Developments.aspx

https://en.wikipedia.org/wiki/Atomic_bombings_of_Hiroshima_and_Nagasaki#/media/File:Atomic_b ombing_of_Japan.jpg

Centre for Radiation

Research Education

and Innovation

Current Low Dose Radiation Therapy

- Current use is limited
 - Primarily used in Germany for degenerative or chronic inflammatory disorders
 - Tendonitis, eczema, arthritis etc.
- Dormant treatment option for respiratory inflammation, until now

Trial details	Patients, No.	Age, y	Requiring O ₂ supplementation?	Whole-lung radiation dose	Outcome metric
RESCUE 1-19 (Emory)	10	≥18	Yes	150 cGy	Safety
					Clinical recovery
Imam Hossein Hospital (Iran)	5	>60	Yes	50 cGy (+ optional 50 cGy)	SaO ₂
					Length of hospital/ICU stay
COLOR-19 (Italy)	30	≥50	Yes	70 cGy	Length of hospital stay
					Clinical recovery
VENTED (Ohio State University)	24	≥18	Yes (ventilated)	80 cGy	30-d mortality
All India Institute trial	10	≥18	No (but NEWS \geq 5)	70 cGy	Symptom improvement (NEWS), 30-d ICU admission rate and mortality
Hospital La Milagrosa (Spain)	15	>18	Yes	80 Cgy	Oxygen therapy deescalation
					SaO ₂

^aCOVID-19 = coronavirus disease-2019; ICU = intensive care unit; LDRT = low-dose radiation therapy; NEWS = National Early Warning Score; SaO₂ = oxygen saturation.

Centre for Radiation Research Education and Innovation

Venkatesulu et al, 2021, JNCI Cancer Spectrum

Pathology

Ware and Matthay, 2000, N Eng J Med

Response to LDRT

- In both *in vitro* and *in vivo models*
- Change from M1 > M2
 - \downarrow IL-1b, TNF- α
 - 个 IL-6, IL-10, TGF-β
- Downregulation of adh molecules
 - \downarrow P-selectin, L-selectin $\frac{1}{2}$
 - \downarrow leukocyte migration
- Leads to overall reduced inflammation and improved respiratory function

To investigate the efficacy of a single dose of low-moderate X-irradiation in immunomodulating the effects of acute respiratory inflammation at 6 and 18-hours post LPS-insult

Hypothesis:

A single dose of X-irradiation will have a dose-dependent immunomodulatory effect on LPS-induced acute respiratory inflammation.

Stimuli

Data represented as mean ± 1SE (n=4-6)

Cytokine Concentration

Cellular Infiltration

Data represented as mean ± 1SE (n=4-6)

Stimuli

LPS

Stimuli

LPS

Pulmonary Oedema

Data represented as mean ± 1SE (n=4-6)

Respiratory Function

Data represented as mean ± 1SE (n=4-6)

Stimuli

Conclusion

- Rat Model of LPS induced Acute Lung injury was successful but Model of immunomodulation was unsuccessful
- Limitations
 - Non-replicating infection model
 - Single dose of ionising radiation at a single timepoint

Acknowledgements

The Lung Lab, Flinders University

- Chandler Morris (honours student)
- Associate Professor Dani-Louise Dixon

CRREI

Associate Professor Antony Hooker

Funding

• Flinders ECR Impact of giving grant

